236 research outputs found

    The forensic reconstruction of road traffic accidents

    Get PDF
    This project aims to approach the issues of collision damage quantification and accident scene reconstruction in a critical manner. A series of accident scenarios that demonstrate modern-day vehicle collisions will be presented. The collision damage will be studied with regard to the scene, environment and the path and speed of each vehicle. The scientific focus will involve how the accuracy of the process in comparison to forensic measurements made at the scene, and how well the reconstruction process describes the features of the incident. The work will show how a software package tailored for traffic accident investigators can study the impact damage resulting from a collision, plus variables such as the speed and trajectory of the vehicles involved, to improve the reconstruction analysis and reduce overall doubt in any judgments. As the use of road networks continues to expand globally, accidents are prevalent in every country where cars and other vehicles are present. By gaining a better understanding of how such accidents occur, the occurrence and cost of these avoidable events may be reduced. The use of accident modelling software is established specifically for this purpose; to provide an unbiased platform for implementing cases from a basic parking bump to a motorway pile-up, enabling such variable effects as weather, road surface and the type of tyres to be accounted for

    The RMS Survey: Distribution and properties of a sample of massive young stars

    Full text link
    The Red MSX Source (RMS) survey has identified a large sample of massive young stellar objects (MYSOs) and ultra compact (UC) HII regions from a sample of ~2000 MSX and 2MASS colour selected sources. Using a recent catalogue of molecular clouds derived from the Boston University-Five College Radio Astronomy Observatory Galactic Ring Survey (GRS), and by applying a Galactic scaleheight cut off of 120 pc, we solve the distance ambiguity for RMS sources located within 18\degr 54\degr. These two steps yield kinematic distances to 291 sources out of a possible 326 located within the GRS longitude range. Combining distances and integrated fluxes derived from spectral energy distributions, we estimate luminosities to these sources and find that > 90% are indicative of the presence of a massive star. We find the completeness limit of our sample is ~10^4 Lsun, which corresponds to a zero age main sequence (ZAMS) star with a mass of ~12 Msun. Selecting only these sources, we construct a complete sample of 196 sources. Comparing the properties of the sample of young massive stars with the general population, we find the RMS-clouds are generally larger, more massive, and more turbulent. We examine the distribution of this sub-sample with respect to the location of the spiral arms and the Galactic bar and find them to be spatially correlated. We identify three significant peaks in the source surface density at Galactocentric radii of approximately 4, 6 and 8 kpc, which correspond to the proposed positions of the Scutum, Sagittarius and Perseus spiral arms, respectively. Fitting a scale height to the data we obtain an average value of ~29+-0.5 pc, which agrees well with other reported values in the literature, however, we note a dependence of the scale height on galactocentric radius with it increases from 30 pc to 45 pc between 2.5 and 8.5 kpc.Comment: Accepted for publication by MNRAS. Paper consists of 15 pages including 12 figures and four tables. Full versions of Tables 2 and 3 will only be available online. The resolution of Figure 9 has been reduced - a full resolution version of the paper can be download from here: http://www.ast.leeds.ac.uk/cgi-bin/RMS/RMS_PUBLICATIONS.cg

    Compression of glycolide-h4 to 6 GPa

    Get PDF
    This study details the structural characterisation of glycolide-h4 as a function of pressure to 6 GPa using neutron powder diffraction on the PEARL instrument at ISIS Neutron and Muon source. Glycolide-h4, rather than its deuterated isotopologue, was used in this study due to the difficulty of deuteration. The low-background afforded by Zirconia-Toughened Alumina (ZTA) anvils nevertheless enabled the collection of data suitable for structural analysis to be obtained to a pressure of 5 GPa. Glycolide-h4 undergoes a reconstructive phase transition at 0.15 GPa to a previously identified, form-II, which is stable to 6 GPa

    A Mid-Infrared Census of Star Formation Activity in Bolocam Galactic Plane Survey Sources

    Full text link
    We present the results of a search for mid-infrared signs of star formation activity in the 1.1 mm sources in the Bolocam Galactic Plane Survey (BGPS). We have correlated the BGPS catalog with available mid-IR Galactic plane catalogs based on the Spitzer Space Telescope GLIMPSE legacy survey and the Midcourse Space Experiment (MSX) Galactic plane survey. We find that 44% (3,712 of 8,358) of the BGPS sources contain at least one mid-IR source, including 2,457 of 5,067 (49%) within the area where all surveys overlap (10 deg < l < 65 deg). Accounting for chance alignments between the BGPS and mid-IR sources, we conservatively estimate that 20% of the BPGS sources within the area where all surveys overlap show signs of active star formation. We separate the BGPS sources into four groups based on their probability of star formation activity. Extended Green Objects (EGOs) and Red MSX Sources (RMS) make up the highest probability group, while the lowest probability group is comprised of "starless" BGPS sources which were not matched to any mid-IR sources. The mean 1.1 mm flux of each group increases with increasing probability of active star formation. We also find that the "starless" BGPS sources are the most compact, while the sources with the highest probability of star formation activity are on average more extended with large skirts of emission. A subsample of 280 BGPS sources with known distances demonstrates that mass and mean H_2 column density also increase with probability of star formation activity.Comment: 20 pages, 12 figures, 3 tables. Accepted for publication in ApJ. Full Table 2 will be available online through Ap

    A Search for Infall Evidence in EGOs I: the Northern Sample

    Full text link
    We report the first systematic survey of molecular lines (including HCO+ (1-0) and 12CO, 13CO, C18O (1-0) lines at 3 mm band) towards a new sample of 88 massive young stellar object (MYSO) candidates associated with ongoing outflows (known as extended green objects or EGOs) identified from the Spitzer GLIMPSE survey in the northern hemisphere with the PMO-13.7 m radio telescope. By analyzing the asymmetries of the optically thick line HCO+ for 69 of 72 EGOs with HCO+ detection, we found 29 sources with blue asymmetric profiles and 19 sources with red asymmetric profiles. This results in a blue excess of 0.14, seen as a signature of collapsing cores in the observed EGO sample. The relatively small blue excess measured in our full sample due to that the observed EGOs are mostly dominated by outflows and at an earlier evolutionary phase associated with IRDCs and 6.7 GHz methanol masers. The physical properties of clouds surrounding EGOs derived from CO lines are similar to those of massive clumps wherein the massive star forming cores associated with EGOs possibly embedded. The infall velocities and mass infall rates derived for 20 infall candidates are also consistent with the typical values found in MYSOs. Thus our observations further support the speculation of Cyganowski et al. (2008) that EGOs trace a population with ongoing outflow activity and active rapid accretion stage of massive protostellar evolution from a statistical view, although there maybe have limitations due to single-pointing survey with a large beam.Comment: 44 pages, 4 figures, accepted for publication in Ap

    Methanol maser associated outflows: detection statistics and properties

    Get PDF
    We have selected the positions of 54 6.7 GHz methanol masers from the Methanol Multibeam Survey catalogue, covering a range of longitudes between 20° and 34° of the Galactic plane. These positions were mapped in the J = 3-2 transition of both the 13CO and C18O lines. A total of 58 13CO emission peaks are found in the vicinity of these maser positions. We search for outflows around all 13CO peaks, and find evidence for high-velocity gas in all cases, spatially resolving the red and blue outflow lobes in 55 cases. Of these sources, 44 have resolved kinematic distances, and are closely associated with the 6.7 GHz masers, a subset referred to as Methanol Maser Associated Outflows (MMAOs). We calculate the masses of the clumps associated with each peak using 870 mum continuum emission from the ATLASGAL survey. A strong correlation is seen between the clump mass and both outflow mass and mechanical force, lending support to models in which accretion is strongly linked to outflow. We find that the scaling law between outflow activity and clump masses observed for low-mass objects, is also followed by the MMAOs in this study, indicating a commonality in the formation processes of low-mass and high-mass stars

    Physical Properties and Galactic Distribution of Molecular Clouds identified in the Galactic Ring Survey

    Full text link
    We derive the physical properties of 580 molecular clouds based on their 12CO and 13CO line emission detected in the University of Massachusetts-Stony Brook (UMSB) and Galactic Ring surveys. We provide a range of values of the physical properties of molecular clouds, and find a power-law correlation between their radii and masses, suggesting that the fractal dimension of the ISM is around 2.36. This relation, M = (228 +/- 18) R^{2.36+/-0.04}, allows us to derive masses for an additional 170 GRS molecular clouds not covered by the UMSB survey. We derive the Galactic surface mass density of molecular gas and examine its spatial variations throughout the Galaxy. We find that the azimuthally averaged Galactic surface density of molecular gas peaks between Galactocentric radii of 4 and 5 kpc. Although the Perseus arm is not detected in molecular gas, the Galactic surface density of molecular gas is enhanced along the positions of the Scutum-Crux and Sagittarius arms. This may indicate that molecular clouds form in spiral arms and are disrupted in the inter-arm space. Last, we find that the CO excitation temperature of molecular clouds decreases away from the Galactic center, suggesting a possible decline in the star formation rate with Galactocentric radius. There is a marginally significant enhancement in the CO excitation temperature of molecular clouds at a Galactocentric radius of about 6 kpc, which in the longitude range of the GRS corresponds to the Sagittarius arm. This temperature increase could be associated with massive star formation in the Sagittarius spiral arm

    An overview of agent-based traffic simulators

    Get PDF
    Individual traffic significantly contributes to climate change and environmental degradation. Therefore, innovation in sustainable mobility is gaining importance as it helps to reduce environmental pollution. However, effects of new ideas in mobility are difficult to estimate in advance and strongly depend on the individual traffic participants. The application of agent technology is particularly promising as it focuses on modelling heterogeneous individual preferences and behaviours. In this paper, we show how agent-based models are particularly suitable to address three pressing research topics in mobility: 1. Social dilemmas in resource utilisation; 2. Digital connectivity; and 3. New forms of mobility. We then explain how the features of several agent-based simulators are suitable for addressing these topics. We assess the capability of simulators to model individual travel behaviour, discussing implemented features and identifying gaps in functionality that we consider important

    Simulating the actions of commuters using a multi-agent system

    Get PDF
    The activity of commuting to and from a place of work affects not only those travelling but also wider society through their contribution to congestion and pollution. It is desirable to have a means of simulating commuting in order to allow organisations to predict the effects of changes to working patterns and locations and inform decision making. In this paper we outline an agent-based software framework that combines real-world data from multiple sources to simulate the actions of commuters. We demonstrate the framework using data supplied by an employer based in the City of Edinburgh UK. We demonstrate that the BDI-inspired decision making framework used is capable of forecasting the transportation modes to be used. Finally we present a case study, demonstrating the use of the framework to predict the impact of moving staff within the organisation to a new work site

    The Stuff We Swim in: Regulation Alone Will Not Lead to Justifiable Trust in AI

    Get PDF
    Recent activity in the field of artificial intelligence (AI) has given rise to large language models (LLMs) such as GPT-4 and Bard. These are undoubtedly impressive achievements, but they raise serious questions about appropriation, accuracy, explainability, accessibility, responsibility, and more. There have been pusillanimous and self-exculpating calls for a halt in development by senior researchers in the field and largely self-serving comments by industry leaders around the potential of AI systems, good or bad. Many of these commentaries leverage misguided conceptions, in the popular imagination, of the competence of machine intelligence, based on some sort of Frankenstein or Terminator-like fiction: however, this leaves it entirely unclear what exactly the relationship between human(ity) and AI, as represented by LLMs or what comes after, is or could be
    • …
    corecore